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1. Abstract

Passive, multi-port power dividers are ofien used in array-antenna applications. Low loss is an

important desired property of these devices. Fundamental litnits imposed by passivity and

geometrical considerations on the power-transfer perfon nance of these devices are analytically

derived and calculated in this paper, using 3-port networks as examples.

2. introduction

This paper is relevant to current research efforts at JP1. al]d in the industry to fabricate multi-way

power dividers and combiners for array-antenna applications. The unit-cell of most of these

dividers is a 3-port

Wilkinson and Gysel

or a 4-port network with one pol t terminated (e.g., branchlike, ratrace,

power dividers). As the size of array-antennas increases, so do the required

“layers” of power division (as the base-two logarithm of the size). Therefore, the insertion loss of

these unit-cell devices, which are cascaded in layers, becomes an important concern and design

parameter, The examples of unit-cell devices mentioned above all provide isolated output ports

which can be matched to the input and output port normalizing characteristic impedance (usually

50 Ohms). Fundamental limitations imposed by passivity on these 3-port devices are quantified in

this paper and a numerical example of what these limitations entail for the case of a generalized 3-
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port network is furnished. In other examples of “corporate” type multi-port power dividers

without isolation, the output ports are not matched to 50 Ohms. These work well with passive

arrays, where the antennas have input impedances close to 50 Ohms, but are not suitable for

driving the amplifiers of active arrays, since amplifiers arc sensitive to the match at their input.

These corporate dividers, which are not 3-ports, are not considered in this paper.

3. An Analytical Statement of Passivity

A network is considered passive when the power incident onto it is greater than or equal to the

power reflected from it, for all possible excitations. A network described by the ‘a’ and ‘b’ wave

parameters is shown in figure 1 below (where a 3-poI-t network is used for depiction purposes).

The a-waves are the incident waves and the b-waves are the reflected waves, at each port. These

are normalized so that, for example,

(1)

corresponds to the power carried by the wave incident at port 1. It is easy to see that the total

power incident to this network from all ports is

‘i.c =:$ Iaj 1’ ,
1–I

where N is the total number of ports of the network.

Similarly, the total power scattered by the network is

s,., =;$W’P 1,
1- 1

(2)

(3)

An alternate way to express equations (2) and (3) in matrix notation is
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(4)

(5)

where a=(a],a2,...,aN)1 and b=(b1,b2,..  .,bN)T and the ‘(dagger” notation is used to denote

conjugate-transpose. By the definition of the S-matrix we have

b=Sa ,

where S is an N-by-N matrix that characterizes the response of the network.

Combining the last 3 equations gives the total dissipated power as

P,,, = Pine - P.ca, = ~(a+a-a+S+Sa)=  ~a+(l--S’S)a =~-a’Qa
.

(6)

(7)

where 1 have defined the dissipation matrix, Q, of the network. For any passive network it must

be

P~,$  20, Va . (8)

Equations (7) and (S) imply that the matrix Q must be non-negative real (i.e., the quadratic form

a+ Qa must be a non-negative real number for all a). Let us examine the implications of this on

Q. To form our conclusions we will use the following theorems from matrix theory:

Theorem 1

Every hermitian matrix has real eigenvalues,

Theorem 2

A hermitian matrix has non-negative eigenvalues  if and only if it is positive semi-definite.
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Theorem 3

For every hermitian  matrix there exists a complete set of 01 {honormal eigenvectors.

Clearly, S+ S is a hermitian and positive semi-definite matlix (proof (S”’ S)+ = S+ (S+ )+ = S+S and

(a+ S+S)a = (a+S+ )(Sa) = (Sa)+ (Sa) = bib >0 ‘da, since the last expression is the square of

the norm of the vector b and therefore non-negative). Hence, by Theorems 1 and 4 the

eigenvalues  of S’ S are all real and non-negative, i.e.,

2s+s >0, Vi .1 (9)

The matrix Q is also hermitian (proof Q+ =(1 – S+ S)+ =1+ -- (S’S)+ = 1 – S+S = Q) and its

eigenvalues  are given by

l~=l–~~+s  Vi . ( lo )

Assume 2.. is an eigenvalue  of Q.

Hence we have

det(Q-A~I)=  dct(l--S+S-A~l) = -det[S+S-(l-A~)l]=  O

i.e., 1 – l; is an eigenvalue  of S’S, QED.

Using (9) and (1 O) we conclucle that

1~<1, Vi . (11)

Hence, using Theorems 1 and 2, the hermiticity of Q and equation ( 11 ) we can state the necessary

and sufficient condition of passivit y (equation (7)) in the following theorem.

Theorem

Passivity = O <2:<1  Vi . (12)
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(Actually the right part of the right-hand-side of equation (12)

in equation (1 1), but it is a goc)d check on any calculations).

is guaranteed, as has been proven

Equation (12) states, in words, that the eigenvalues  of Q (which are real since it is hermitian)

must be between O and 1 (greater than or equal to zero because of passivity and less than or equal

to one because of the positive-semi-definiteness of S+S).

An alternate proof of the above theorem, which gives more insight into

of the eigenvalues  and eigenvectors  of Q is as follows:

he physical significance

Let us assume that we excite the network of figure 1 with an incident wave a., an eigenvector  of

matrix Q, of power ~t.c, ?. By definition, a. must obey thethat corresponds to an eigenvalue  1

following two equations:

1–.~:~* = ]?Inc (13)
2

and

Qa, = A?a* .

Substituting (13) and (14) into (7) we obtain

( )
l;,. = ;a; Qa, = $ %  =  }.? ;a; a. = A?};.C

By the definition of dissipated power we have

0 <  ):,, s I;nc . (16)

Substituting (15) into (16) we obtain the desired result, as expressed in equation (1 2).

Equation (15) provides a good physical interpretation of the significtince of the eigenvalues  of

mat rix Q: An ei~’cm)ahw of Q reprcset~ts  the -fraciion of the imideni power thai is diss~>ated in

the network, when the Ialler is excited by the eigenvector correspo~~ditg to thai eigenvalue.

(14)

(15)
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Equation (15) also tells us how to minimize the power (iissipatecl  in the network: lixcite the

network with atl i)lcident wave which is the eige?wector OJ Q that corresponds 10 its mininmn

eigetwalne. In fact, if Q has a zero eigenvalue,  i.e., it is singular, it is possible to excite the

network in a way that no power is dissipated (with the eip,envector  that corresponds to the zero

eigenvalue).

4. implications of Passivity. An Example.

4.1 The Circuit

A 3-port network is chosen to demonstrate the concepts described above. A representative

circuit is a branchlike power divider with its isolated port terminated in a 50 Ohm load (figure 2).

One of the three remaining ports (port 1) is the input and the other two (ports 2 and 3) the

outputs. In an idealized model, where all the lines are exactly one quarter of a wavelength long at

the design frequency and lossless  (no ohmic losses), the isolation between ports 2 and 3 can be

analytically shown to be infinite (i.e., S23=0). However, the realities of building the circuit on a

substrate are different. On the actual mask, used to fabricate the circuit, one can see that, at the

point where the mutually perpendicular quarter-wave lines join, there is a ‘T’-junction. This T-

junction has dimensions and cannot be considered a “lumped” element. This implies that the

microwave current distributes throughout the T-junction; it does not travel a unique path. There

is an infinite number of linear paths along which the electrical length of the current is 90 degrees.

There is also an infinite number of linear paths along which the electrical length is slightly different

from 90 degrees. In the frequency response of the circuit, this has the effect of “broadening” and

“shallowing” the infinite well that the magnitude plot of S23 ideally exhibits at the design

frequency. This effect is unrelated to ohmic losses (i.e., it also occurs in the ideal, perfectly

conducting circuit), It implies that, in an actual circuit of this type, the magnitude of S23 can be
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very small, but not zero, at the design frequency. This rationale, which is geometry dependent but

~ material property dependent, allows us to set a lower bound on S23. This bound, together

with the passivity constraints on the Q matrix, yield constraints on the insertion loss of this circuit

which are not material dependent. Regardless of how lossless  the guiding conductor and

substrate are, the constraints derived below apply nevertheless.

4.2 The Calculations

The soflware package Matlab, by Mathworks Inc., is used for the analysis. Matlab  is preferred

because it is optimized for matrix computations and quite accurate in eigenvalue  problems. Three

different cases are analyzed. The methodology is the same in all three cases:

1. Assume a form for the S-matrix of the network.

2. Compute the eigenvalues  of the Q-matrix as a funct ion of insertion loss and isolation.

3. Plot, in the two-dimensional space defined by the insertion loss and the isolation, the curve

demarcating the region where the 3-port is passive (i.e., realizable with passive

components) from the region where it is not. (i.e., plot the locus of points that lie where

the minimum eigenvalue  of Q crosses from positive to negative values).

An alternative method to determine the physically achievable region, where Q is passive, is to find

the locus of points, in the isolation-insertion loss space, that make the matrix Q singular. This

approach should, however, be taken with caution to avoid trivial roots of the characteristic

polynomial of Q.

Case 1. Perfectly matched 3-dB power divider w/ finite isolation amlit~er!~on.~o.ss.

The (symmetric) S-matrix is assumed to have the form



.,

s =

1;Xo

where a is the insertion loss and x the isolation between the output ports of the divider.

The diagonal elements of the matrix (S11, S22 and S33) are assumed zero, (i.e., the device is

perfectly matched). S21 and S31 would ideally have the value l/~2 (3 dB power divider) and a

is the loss in excess of the ideal division loss (insertion loss). The result of the analysis is shown in

figure 3. The horizontal axis is the negative of the isolation (i.e., S32, since isolation is defined

positive) in dB. The vertical axis is the negative of the insertion loss. On the locus of points of

the plotted curve, the minimum eigenvalue  of matrix Q is exactly zero. Therefore, the minimum

possible dissipated power, for this network, may be achieved by exciting the network with an

eigenvector  of Q that corresponds to this zero eigenvalue.  The equation of the zero-eigenvalue

locus of points that make zero dissipation possible, for this form of S-matrix, is

a=fi .

The corresponding normalized, unit-power eigenvcctor  is

[{

2 - 2 x

2 – x
1 1

(17)

(18)

The “achievable” region for a passive circuit is below the curve. A typical value of isolation to be

exhibited by the type of 3-port power dividers mentioned above is 20 dB (seldom more than 30

dB). }Iere 1 treat the isolation as the independent variable and read what the achievable insertion

loss is for each 3-port. The point of comparison will be 18 dB isolation. In this case, for 18 dB

isolation, the minimum achievable insertion loss is 0.59 d13. As the isolation tends to infinity (i.e.,
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x=-O in the S-matrix) the minimum achievable insertion loss tends to O dEl, as is to be expected for

an ideal circuit.

Figure 4 is a plot of the power in each of the three components of the unit-power, zero-dissipation

eigenvector (equation (16)) versus the isolation. The usual excitation in microwave circuits is a

wave incident to port 1, the input port. Hence, the closer the minimum-loss eigenvector  (equation

(16)) is to the vector ({2 O O), the closer we can come to realizing the zero-dissipation

condition.

case 2. Imperfectly matche&3~dB  p~w~v~.e~

The S-matrix is assumed to have the form

s =

1f x 0.1

for sub-case i. and

s =

0.1 -S Z-90 %/-90
Jz%ki

-Q-90 0 . 1 x.Z--18O
42

51-90 xZ-180 0.1

for sub-case ii (ideal 0“/1 80° ratrace power divider).

In this case, an equal-phase 20 dB return loss is assumed on all ports, Figure 5 shows the results

of the analysis for these matrices. The lower and upper curves show the analysis results for sub-

cases i, and ii. respectively.
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Sub-case i.

The minimum achievable insertion loss at 18 cIB isolation increases to 1.56 dB. However, this

case is too restrictive as all the components of the S-matrix are “forced” to be in phase. It is

instructive however to note that the trade-off between insertion loss ancl isolation also depends on

the required phase through the circuit. In this case the minimum inserlion  loss tends to 0.92 dB.

The equation of the zero-eigenvalue  locus of points plotted for this sub-case is

a=; J-

and the unit-power, zero-dissipation eigenvector  is

(19)

(20)

Figure 6 is a plot of the power in each of the three components of the unit-power, zero-dissipation

eigenvector  (equation (20)) versus the isolation.

Sub-case ii.

The phases of the elements of the S-matrix are set to the values of an ideal 0“/1 80° ratrace power

divider. The minimum achievable insertion loss at 18 d~ isolation is 0.56 dB. As the isolation

tends to infinity (i.e., x= O in the S-matrix) the minimum insertion loss tends to 0.04 dB (which

corresponds to the expected loss, in the ideal case, due to the reflected power IS 11 12).

The equation of the zero-eigenvalue locus of points plotted for this sub-case is



a=-#” (21)

(22)

and the unit-power, zero-dissipation eigenvector  is

[)

r

, 11–1OX
‘J IO–5X

J&Tx “

J&

Figure 7 is a plot of the power in each of the three components of the unit-power, zero-dissipation

eigenvector (equation (22)) versus the isolation.

Case 3.2:3 power divider with phases from a measu~edYilkinsmM?  pOwer divide~

To relax the constraint that all the elements of the S-matrix are in phase,  the measured phases of

all the elements of the S-matrix of an actual 2:3 Wilkinson power divider, centered at 30 GIIz, are

used. The assumed S-mat rix is

s =

“z-” aJ$L-5’ a&’ra  ~L–55  O.l Z–117 xL–6

[[

.—

a  ~L–55 xZ–6 0 . 1 / - 8 3
J

with the usual definitions of x and a. The results of the analysis arc shown in figure 8. The

minimum insertion loss at 18 dB isolation is 1.1 dB, The minimum insertion loss tends to 0.88

dB, as the isolation tends to infinity. The above results ale not sensitive to “adding line lengths”

at the input and output ports.

The equation of the zero-eigenvalue  locus of points plotted for this sub-case is
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t —.———

/

9,99.10 4 –813X–1.00.10 S
X

2 –513X
3–

i

3.73.10 8 --1.47.108X+8.56.109X2+2.95.107X3

–1.84.10’0x4+  1.20.10’X5  +9.50109XG
a. _. ——. -— .

~99080  - 164.1x -- 96000x2

(23)

The algebraic expression for the zero-dissipation eigenvector  is too complicated and is not

included. Figure 9 is a plot of the power in each of the three components of the unit-power, zero-

dissipation eigenvector  versus the isolation.

S. Conclusions

This paper illustrates that there exist fundamental considerations, above and beyond dielectric loss

tangent and conductivity of rnetalization,  that limit the IIower-transfer  performance of passive

multi-port networks. Bounds or restrictions unrelated to ohmic losses which can be levied on the

S-parameters of a network, may imply additional restrictiolm,  imposed by passivity, on the power-

transfer performance of the network, In the examples above, insertion losses, imposed by

passivity, are calculated for matched 3-port power dividers, These losses are of a fundamental

and inevitable nature. If they are unbearable to the design engineer, other system-design

alternatives have to be considered. In particular the above results show that a matched power

divider without isolation is very lossy (see figs. 2-4 @ 5 dIl isolation). I’he contra-positive of the

above statement, a useful corollary, is that if a power divider without isolation has low insertion

loss it cannot have a low return loss on all its ports.
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